LISTRIK DINAMIS (FISIKA X)
Written by akbar sena on Sabtu, 31 Maret 2012 at 23:23
Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur
kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu
dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah
detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang
masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri
kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan
berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung
pada hambatan, tetapi pada rangkaian bercabang tegangan tidak
berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum
kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan
jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat
disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan.
Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat
arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A)
serta hambatan adalah ohm.
Hukum Ohm
Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat
listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat
listrik bersifat menghambat alus listrik. Hubungan antara arus listrik,
tegangan, dan hambatan dapat diibaratkan seperti air yang mengalir pada
suatu saluran. Orang yang pertama kali meneliti hubungan antara arus
listrik, tegangan. dan hambatan adalah Georg Simon Ohm (1787-1854) seorang ahli fisika Jerman. Hubungan tersebut lebih dikenal dengan sebutan hukum Ohm.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:
Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang
rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:
Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang
rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.
Hambatan Kawat Penghantar
Berdasarkan percobaan di atas. dapat disimpulkan bahwa besar hambatan
suatu kawat penghantar 1. Sebanding dengan panjang kawat penghantar.
artinya makin panjang penghantar, makin besar hambatannya, 2. Bergantung
pada jenis bahan kawat (sebanding dengan hambatan jenis kawat), dan 3.
berbanding terbalik dengan luas penampang kawat, artinya makin kecil
luas penampang, makin besar hambatannya. Jika panjang kawat dilambangkan
ℓ, hambatan jenis ρ, dan luas penampang kawat A. Secara matematis,
besar hambatan kawat dapat ditulis :
Nilai hambatan suatu penghantar tidak bergantung pada beda potensialnya. Beda potensial hanya dapat mengubah kuat arus yang melalui penghantar itu. Jika penghantar yang dilalui sangat panjang, kuat arusnya akan berkurang. Hal itu terjadi karena diperlukan energi yang sangat besar untuk mengalirkan arus listrik pada penghantar panjang. Keadaan seperti itu dikatakan tegangan listrik turun. Makin panjang penghantar, makin besar pula penurunan tegangan listrik.
Nilai hambatan suatu penghantar tidak bergantung pada beda potensialnya. Beda potensial hanya dapat mengubah kuat arus yang melalui penghantar itu. Jika penghantar yang dilalui sangat panjang, kuat arusnya akan berkurang. Hal itu terjadi karena diperlukan energi yang sangat besar untuk mengalirkan arus listrik pada penghantar panjang. Keadaan seperti itu dikatakan tegangan listrik turun. Makin panjang penghantar, makin besar pula penurunan tegangan listrik.
Hukum Kirchoff
Arus listrik yang melalui suatu penghantar dapat kita pandang sebagai
aliran air sungai. Jika sungai tidak bercabang, jumlah air di setiap
tempat pada sungai tersebut sama. Demikian halnya dengan arus listrik.
Jumlah kuat arus yang masuk ke suatu titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan tersebut. Pernyataan itu sering dikenal sebagai hukum I Kirchhoff karena dikemukakan pertama kali oleh Kirchhoff.
Maka diperoleh persamaan :
I1 + I2 = I3 + I4 + I5
I masuk = I keluar
Jumlah kuat arus yang masuk ke suatu titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan tersebut. Pernyataan itu sering dikenal sebagai hukum I Kirchhoff karena dikemukakan pertama kali oleh Kirchhoff.
Maka diperoleh persamaan :
I1 + I2 = I3 + I4 + I5
I masuk = I keluar
Rangkaian Hambatan
- Rangkaian Seri
Berdasarkan hukum Ohm: V = IR, pada hambatan R1 terdapat teganganV1 =IR1 dan pada hambatan R2 terdapat tegangan V2 = IR 2. Karena arus listrik mengalir melalui hambatan R1 dan hambatan R2, tegangan totalnya adalah VAC = IR1 + IR2.
Mengingat VAC merupakan tegangan total dan kuat arus listrik yang mengalir pada rangkaian seperti di atas (rangkaian tak bercabang) di setiap titik sama maka
VAC = IR1 + IR2
I R1 = I(R1 + R2)
R1 = R1 + R2 ; R1 = hambatan total
Rangkaian seperti di atas disebut rangkaian seri. Selanjutnya, R1 ditulis Rs (R seri) sehingga Rs = R1 + R2 +...+Rn, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri. Makin banyak lampu yang dirangkai secara seri, nyalanya makin redup. Jika satu lampu mati (putus), lampu yang lain padam.
Mengingat VAC merupakan tegangan total dan kuat arus listrik yang mengalir pada rangkaian seperti di atas (rangkaian tak bercabang) di setiap titik sama maka
VAC = IR1 + IR2
I R1 = I(R1 + R2)
R1 = R1 + R2 ; R1 = hambatan total
Rangkaian seperti di atas disebut rangkaian seri. Selanjutnya, R1 ditulis Rs (R seri) sehingga Rs = R1 + R2 +...+Rn, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri. Makin banyak lampu yang dirangkai secara seri, nyalanya makin redup. Jika satu lampu mati (putus), lampu yang lain padam.
- Rangakaian Paralel
Mengingat hukum Ohm: I = V/R dan I = I1+ I2, maka
Pada rangkaian seperti di atas (rangkaian bercabang), V AB =V1 = V2 = V. Dengan demikian, diperoleh persamaan
Rangkaian yang menghasilkan persamaan seperti di atas disebut rangkaian paralel. Oleh karena itu, selanjutnya Rt ditulis Rp (Rp = R paralel). Dengan demikian, diperoleh persamaan
Berdasarkan persamaan di atas, dapat disimpulkan bahwa dalam rangkaian paralel, nilai hambatan total (Rp) lebih kecil dari pada nilai masing-masing hambatan penyusunnya (R1 dan R2). Oleh karena itu, beberapa lampu yang disusun secara paralel sama terangnya dengan lampu pada intensitas normal (tidak mengalami penurunan). Jika salah satu lampu mati (putus), lampu yang lain tetap menyala.
Pada rangkaian seperti di atas (rangkaian bercabang), V AB =V1 = V2 = V. Dengan demikian, diperoleh persamaan
Rangkaian yang menghasilkan persamaan seperti di atas disebut rangkaian paralel. Oleh karena itu, selanjutnya Rt ditulis Rp (Rp = R paralel). Dengan demikian, diperoleh persamaan
Berdasarkan persamaan di atas, dapat disimpulkan bahwa dalam rangkaian paralel, nilai hambatan total (Rp) lebih kecil dari pada nilai masing-masing hambatan penyusunnya (R1 dan R2). Oleh karena itu, beberapa lampu yang disusun secara paralel sama terangnya dengan lampu pada intensitas normal (tidak mengalami penurunan). Jika salah satu lampu mati (putus), lampu yang lain tetap menyala.
Gerak Lurus Berubah Beraturan [GLBB]
Gerak Lurus Berubah Beraturan (GLBB) adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -).
Pada umumnya GLBB didasari oleh Hukum Newton II ( S F = m . a ). vt = v0 + a.t
vt2 = v02 + 2 a S
S = v0 t + 1/2 a t2
vt = kecepatan sesaat benda
v0 = kecepatan awal benda
S = jarak yang ditempuh benda
f(t) = fungsi dari waktu t v = ds/dt = f (t)
a = dv/dt = tetap
Syarat : Jika dua benda bergerak dan saling bertemu maka jarak yang ditempuh kedua benda adalah sama.
Alat Optik
Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.
Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal.
Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.
Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.
daya akomodasi mata
Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.
Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.
mikroskop dan bagian-bagiannya
pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.
untuk mata berakomodasi maksimum
untuk mata tidak berakomodasi
Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok
Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.
Alat Optik
Alat Optik
Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.
Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal.
Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.
Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.
daya akomodasi mata
Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.
Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.
mikroskop dan bagian-bagiannya
pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.
untuk mata berakomodasi maksimum
untuk mata tidak berakomodasi
Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok
Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.
Gerak Lurus Berubah Beraturan (GLBB) adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -).
Pada umumnya GLBB didasari oleh Hukum Newton II ( S F = m . a ). vt = v0 + a.t
vt2 = v02 + 2 a S
S = v0 t + 1/2 a t2
vt = kecepatan sesaat benda
v0 = kecepatan awal benda
S = jarak yang ditempuh benda
f(t) = fungsi dari waktu t v = ds/dt = f (t)
a = dv/dt = tetap
Syarat : Jika dua benda bergerak dan saling bertemu maka jarak yang ditempuh kedua benda adalah sama.
Alat Optik
Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.
Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal.
Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.
Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.
daya akomodasi mata
Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.
Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.
mikroskop dan bagian-bagiannya
pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.
untuk mata berakomodasi maksimum
untuk mata tidak berakomodasi
Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok
Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.
Alat Optik
Alat Optik
Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.
Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal.
Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.
Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.
daya akomodasi mata
Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.
Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.
mikroskop dan bagian-bagiannya
pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.
untuk mata berakomodasi maksimum
untuk mata tidak berakomodasi
Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok
Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.
0 komentar:
Posting Komentar